<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<META content="MSHTML 6.00.2600.0" name=GENERATOR></HEAD>
<BODY bottomMargin=0 leftMargin=3 topMargin=0 rightMargin=3>
<DIV>Seqfans,</DIV>
<DIV>     There is a simple answer my own 
questions (in prior email). <BR>Since asinh(x) = log(sqrt(1+x^2) + x), 
</DIV>
<DIV>then the sum (13) fits the form:</DIV>
<DIV>  Sum_{n>=0} log(F(q^n*x))^n/n!  =  Sum_{n>=0} x^n 
[y^n] F(y)^(q^n)</DIV>
<DIV>where F(y) = sqrt(1+y^2) + y  .</DIV>
<DIV> </DIV>
<DIV>Thus, </DIV>
<DIV>G(x,q) = Sum_{n>=0} asinh( q^n*x )^n / n!  = </DIV>
<DIV>  Sum_{n>=0} x^n [y^n] ( sqrt(1+y^2) + y )^(q^n) </DIV>
<DIV> </DIV>
<DIV>When q=2,</DIV>
<DIV>
<DIV>G(x,2) = Sum_{n>=0} asinh( 2^n*x )^n / n!  = </DIV>
<DIV>  Sum_{n>=0} x^n [y^n] ( sqrt(1+y^2) + y )^(2^n) = 
</DIV></DIV>
<DIV>  1 + 2*x + 8*x^2 + 84*x^3 + 2688*x^4 + 276892*x^5 + 94978048*x^6 
+...</DIV>
<DIV>  </DIV>
<DIV>then to get the sum of (12) we simply take the 
bisection: (G(x,2) - G(-x,2))/2.  </DIV>
<DIV> </DIV>
<DIV>Thanks, </DIV>
<DIV>      Paul </DIV>
<DIV>  </DIV>
<BLOCKQUOTE dir=ltr 
style="PADDING-LEFT: 10px; MARGIN-LEFT: 10px; BORDER-LEFT: #000000 2px solid">
  <DIV>Here is an example using the hyperbolic sine series applied on the 
  inverse sinh:<BR>(12) G.f.: A(x) = Sum_{n>=0} asinh( 2^(2n+1)*x )^(2n+1) / 
  (2n+1)!  = <BR>2*x + 84*x^3 + 276892*x^5 + 111457917800*x^7 + 
  <BR>6660816097416169260*x^9 + 66597307693046550483175282456*x^11 
  +<BR>120167520447600665027319450022840022638104*x^13 +...</DIV>
  <DIV> </DIV>
  <DIV>Is there a simple formula for the integer coefficients on the right side 
  of (12)? <BR> </DIV>
  <DIV> </DIV>
  <DIV>Of course (12) is an example of the more general: </DIV>
  <DIV>(13) G.f.: A(x) = Sum_{n>=0} asinh( q^(2n+1)*x )^(2n+1) / 
  (2n+1)!  = ? <BR>yielding some unknown integer series for 
  all integer q. </DIV>
  <DIV> </DIV>
  <DIV>Is there a simple formula for the integer coefficients on the right side 
  of (13)? </DIV>
  <DIV>It would be nice if it turned out to be as simple a formula as: 
  </DIV>
  <DIV>(2) Sum_{n>=0} log(1 + q^n*x)^n/n!  =  Sum_{n>=0} 
  C(q^n,n)*x^n. </DIV>
  <DIV> </DIV></BLOCKQUOTE></BODY></HTML>