Preliminary Proposal for Partitioning a Circular Disk into 5 Parts

Wolfdieter Lang ${ }^{1}$

Motivated by Neil Sloane's seqfan e-mails from May 2012 which referred to the figure on p. 4 of the paper "Les partages d'un Polygone convexe en 4 Polygones Semblables au Premier" by G. Valette and T. Zamfirescu, J. Comb. Theory, (B) 16, (1974) 1-16, available under http://tzamfirescu.tricube.de , we propose a set of 92 partitions of a circular disk into $n=5$ parts which satisfy the requirements given in that paper on p. 3, namely i) each part is topologically equivalent to a circular disk (Jordan domain), and the union of all the n parts with boundary is a circlular disk, ii) the pairwise intersections of the parts without boundary are empty, and iii) the pairwise intersections of the parts with boundary are connected.
For example, a part obtained by the intersection of two overlapping circles which touch each other in a point (a sickle-shaped part) is not allowed because this is topologically not a circular disk. Whenever two inner nodes are connected by two or more edges rule iii) will be violated. Each node has degree $d \geq 3$. Euler's formula is $n=(e+b)-(i+b)+1=e-i+1$, with internal nodes Q_{1}, \ldots, Q_{i}, internal edges F_{1}, \ldots, F_{e} and boundary edges E_{1}, \ldots, E_{b} (these are the names proposed by Neil Sloane). Twice the total number of edges is obtained from the sum over the degrees d of all nodes: $2(b+e)=$ $\sum_{j=1}^{b} d\left(P_{j}\right)+\sum_{j=1}^{i} d\left(Q_{j}\right)$.
It may be that some partition is missing. Also, undetected multiple counting may be present. All examples should satisfy the rules.
If 92 should be correct the sequence would start like $\{1,1,3,15,92, \ldots\}$ (probably not related to $\underline{\text { A020108 }}$). Error detection log:

1. David Scambler, Aug 21 2012: old e) i) $1=$ e) i) 2

[^0]a) Number of internal nodes $\mathbf{i}=0$

10

11

12

15

16

17

19

21

26

27

28

29
b) Number of internal nodes $\mathbf{i}=1$
i) degree 3 node
i)

1

2

3

4

9

20

21

22

23

b) Number of internal nodes $\mathbf{i}=1$ (continued)
ii) degree 4 node and iii) degree 5 node
ii)

1

iii)

c) Number of internal nodes $\mathbf{i}=2$
i) two degree 3 nodes

ii) one degree 3 node and one degree 4 node

1

2

3
d) Number of internal nodes $\mathbf{i}=3$
i) three degree 3 nodes and
ii) two degree 3 nodes and one degree 4 node
i)

1

2

3

4

ii)

1

2

e) Number of internal nodes $\mathbf{i}=4$
i) four degree 3 nodes and ii) three degree 3 nodes and one degree 4 node
i)

1

2

3

ii)

1
f) Number of internal nodes $\mathbf{i}=5$

1
Total number: $29+24+(3+1)+(16+3)+(8+2)+(4+1)+1=92$.

[^0]: ${ }^{1}$ wolfdieter.lang@kit.edu, http://www-itp.particle.uni-karlsruhe.de/~wl

