# [seqfan] Re: Most efficient way to construct a list of pandigital palindromic numbers?

Maximilian Hasler maximilian.hasler at gmail.com
Tue Dec 8 04:22:54 CET 2009

```Some more terms of A168334 are:
[1023456987896543201, 1023458697968543201, 1023459768679543201,
1023469587859643201, 1023489657569843201, 1023497568657943201,
1023549678769453201, 1023568794978653201, 1023568947498653201,
1023578964698753201, 1023589674769853201, 1023594678764953201,
1023596478746953201, 1023645987895463201, 1023647958597463201,
1023654987894563201, 1023674895984763201, 1023675948495763201,
1023697548457963201, 1023746895986473201, 1023746958596473201,
1023785964695873201, 1023789645469873201, 1023794685864973201,
1023795468645973201, 1023856947496583201, 1023865497945683201,
1023867945497683201, 1023896457546983201, 1023896547456983201,
1023946587856493201, 1023946857586493201, 1023947658567493201,
1023948567658493201, 1023956784876593201, 1023975468645793201,
1023985674765893201]
***   last result computed in 0 ms.

using

{n=1023333333333333201;p=vector(6,i,10^i+(i<6)*10^(12-i))~*10^3;a=[];for(k=0,6!,ispseudoprime(n+numtoperm(6,k)*p)
& a=concat(a,n+numtoperm(6,k)*p,", ")); vecsort(a)}

You could also add a link to
http://primes.utm.edu/curios/page.php?short=1023456987896543201

On Mon, Dec 7, 2009 at 6:52 PM, Andrew Weimholt
<andrew.weimholt at gmail.com> wrote:
> On 12/7/09, Alonso Del Arte <alonso.delarte at gmail.com> wrote:
>>  ...enough for my purpose, which is to verify the validity of
>>  A168334<http://www.research.att.com/~njas/sequences/A168334> and
>>  perhaps add another four or eight terms.
>
> Also remember to add the "base" keyword while you are editing it. :-)
>
> Andrew
>
>
> _______________________________________________
>
> Seqfan Mailing list - http://list.seqfan.eu/
>

```