[seqfan] Re: Riecaman

hv at crypt.org hv at crypt.org
Thu Sep 12 15:41:18 CEST 2019


Super stuff, could you please update the A-file with the result for 71
and the new limits for the incomplete ones?

Cheers,

Hugo

Nick Matteo <kundor at kundor.org> wrote:
:I computed more terms of some of these sequences.
:
:Most notably, the trajectory for 71 ends after 158228253524 (ca. 158
:billion) steps, the last prime subtracted being 4443679700533.
:
:I computed a few more of the minima in your sequence starting with 6:
:
:             i n_i          p_{i+1}
:             2   1                5
:             5   2               13
:            12   1               41
:            29   8              113
:            78   3              401
:           199   4             1223
:           508   1             3637
:          1355   2            11197
:          3592   1            33569
:          9589   8            99971
:         25752   1           296753
:         70579  30           890377
:        194228   5          2664229
:        539961  60          8002847
:       1507602   1         24007873
:       4228745   4         72001673
:      11913940   7        215991203
:      33690443  38        647909833
:      95581182  25       1943478491
:     272003821  16       5830319399
:     776082524  19      17489762779
:    2219823175  16      52470123707
:    6363074656   9     157409115779
:   18275879639  18     472222208149
:   52587587974   3    1416658480733
:  151572062973  22    4249982656133
:  437548314952  61   12749957904521
: 1264892207811   8   38249838428717
: 3661490934914   3  114749512555373
:10612045942623   8  344248576871219
:30792215692360  13 1032745848371989
:
:Thus it couldn't hit 0 until around 90 trillion steps.
:
:The first few minima starting with 20 are:
:            i n_i        p_{i+1}
:            6   1             17
:           15   4             53
:           46   1            211
:          113  10            619
:          280   5           1823
:          731   6           5531
:         1894   9          16339
:         5007  38          48679
:        13492   1         145819
:        36887  10         439367
:       101126   5        1315661
:       280177  18        3954053
:       779238   7       11857073
:      2179061  30       35561137
:      6122110  21      106653377
:     17273371  14      319963883
:     48904804  15      959782393
:    138917293  12     2879370899
:    395717222  87     8638014793
:   1130187981   4    25915353869
:   3235199798  49    77745289207
:   9280360825  36   233232717407
:  26672973902   7   699697233679
:  76797750557  32  2099101861691
: 221477503948  31  6297300594289
: 639681173681  58 18891882066913
:1850131571990  81 56675642260597
:
:The first few minima starting with 50 are:
:            i n_i        p_{i+1}
:           10   1             31
:           23   6             89
:           64   1            313
:          159   2            941
:          398   5           2731
:         1037  12           8273
:         2754   1          24923
:         7299   8          73973
:        19506   1         218761
:        53301  26         656429
:       146396   9        1962967
:       405971   4        5892959
:      1132492  25       17685539
:      3173065  34       53053547
:      8928446  19      159130943
:     25226291   6      477406117
:     71506842  95     1432061549
:    203333407  12     4296147983
:    579758492   7    12887968169
:   1657251341  24    38665453867
:   4747662354  23   115994882567
:  13628787329  54   347979525269
:  39196613838   9  1043932282319
: 112924461059  38  3131800435073
: 325846539826  13  9395396532143
: 941613240105  10 28186159828283
:
:When starting with 51, the minima occur at the same steps, but each
:n_i  is one larger.
:
:For 70:
:            i n_i        p_{i+1}
:           13   2             43
:           36   1            157
:           83   4            433
:          204  13           1259
:          531   8           3833
:         1356  15          11213
:         3611   8          33739
:         9764   5         101987
:        26731  10         309109
:        73274  15         927191
:       202605   2        2788813
:       562190   3        8356861
:      1569627  20       25062967
:      4406454  29       75219323
:     12419599  22      225710143
:     35130326   1      677159999
:     99702241   8     2031695719
:    283769884   7     6095160419
:    809844705  10    18286822013
:   2316543714  53    54859591001
:   6640906387  22   164578508771
:  19075689854  35   493739715163
:  54893524725   2  1481228734481
: 158228253522  19  4443679700513
: 456789722191  26 13331029653661
:1320592376350   1 39993122267353
:
:Similarly to the 50/51 pair, the trajectory for 71 has minima at the
:same locations, but each n_i is one larger for the first 158 billion
:steps.
:When the trajectory for 70 hits 19 at step 158228253522, the
:trajectory for 71 instead hits 20, which is equal to the next prime
:difference 4443679700533 - 4443679700513,
:so that the sequence terminates two steps later.
:
:Cheers,
:Nick Matteo
:
:On Wed, Aug 28, 2019 at 6:46 PM <hv at crypt.org> wrote:
:>
:> Here is a Recaman-inspired sequence with apparent ties to Riemann.
:>
:> The main purpose of this is to ask why on earth we end up with a series
:> of primes whose successive ratios converge to 9.
:>
:> Define a mapping n_{i-1} -> n_i as:
:>   n_{i-1} + p_i    if p_i > n_{i-1}
:>   n_{i-1} - p_i    otherwise
:> with a given starting point n_0, and where p_i is the i'th prime.
:>
:> Define a(n) as the least positive k such that n_k is 0 when we set n_0 = n,
:> or as 0 if no such k exists.
:>
:> I've calculated most values of a(0) .. a(100), (see below); the missing ones
:> are for n in { 6 16 20 30 42 50 51 56 70 71 76 84 85 90 92 }, and there
:> things get interesting. If k exists for any of these, it is at least 1.5e10.
:>
:> Several of those hard ones collapse to identical trajectories early on:
:>   6, 16, 30, 56, 90
:>   20, 42, 76
:>   50, 84
:>   51, 85
:> .. so a(6) = a(16) etc. Taking the first of such sets as "primitive",
:> that leaves primitives { 6 20 50 51 70 71 92 }.
:>
:> The shape of the trajectories is that we alternately add and subtract,
:> with the net effect that n_{i+2} is smaller than n_i by the prime difference,
:> until we reach a local mininum that is either zero (terminating the
:> process) or too small for the prime difference causing us to add twice
:> in a row. When we hit a local minimum we also switch the parity of
:> the lower of each pair of terms, and obviously we can't hit zero when
:> that's odd.
:>
:> Checking the even local minima for the trajectory of 6, for example,
:> gives:
:> n  n_i  i          p_i
:> 6    2  5          13
:> 6    8  29         113
:> 6    4  199        1223
:> 6    2  1355       11197
:> 6    8  9589       99971
:> 6   30  70579      890377
:> 6   60  539961     8002847
:> 6    4  4228745    72001673
:> 6   38  33690443   647909833
:> 6   16  272003821  5830319399
:> 6   16  2219823175 52470123707
:>
:> I looked at this mostly to try and understand whether I should expect
:> 0 values of the sequence to exist - my conjecture is no - but looking
:> at the ratio of the p_i for those local minima, they turn out to be
:> converging on something astonishingly close to 9. For n_0 = 6 we get:
:>
:> 8.69230769230769 (= 113/13)
:> 10.8230088495575
:> 9.15535568274734
:> 8.92837367151916
:> 8.90635284232427
:> 8.98815557904124
:> 8.99700731502177
:> 8.99853858951305
:> 8.99865861273323
:> 8.99952817610636
:>
:> The ratios in other examples look similar, eg for 71:
:>
:> 8.01910828025478
:> 8.90627482128674
:> 9.09542495317934
:> 9.09126653397002
:> 9.01309546792409
:> 9.00090632116533
:> 9.00247399195550
:> 9.00106389627424
:> 9.00051634900210
:>
:> That makes no sense to me. I hope someone else can explain it.
:>
:> Hugo van der Sanden
:
:--
:Seqfan Mailing list - http://list.seqfan.eu/



More information about the SeqFan mailing list