Reply from On-Line Encyclopedia of Integer Sequences (fwd)

Richard Guy rkg at cpsc.ucalgary.ca
Tue Jan 22 00:43:36 CET 2002


In connexion with the following, I append part of a
message sent to a graduate student, which may contain
items which you could use.

The student was encouraged to try to find a relationship
between the two sequences submitted to `lookup'.  The
first one is the sequence  `r' in the attached message.

Warning.  Mostly hand calculations and transcriptions,
so there are probably several numerical errors.

If some hero wants to do this for other values of 7
(any squarefree number) then there would be another
countable infinity of sequences for the OEIS.

Best,   R.

---------- Forwarded message ----------
Date: Mon, 14 Jan 2002 17:31:03 -0500 (EST)
From: sequences-reply at research.att.com
To: rkg at cpsc.ucalgary.ca
Subject: Reply from On-Line Encyclopedia of Integer Sequences 

Matches (up to a limit of 50) found for  2 1 2 3 2 7 2 3 6 6 2 7 14 3 2 3 6 9 6 7 6 6 2  :

Matches (up to a limit of 50) found for  4 2 6 6 4 16 2 6 16 10 4 14 32 6 2 4 16 14 12 24  :


%I A064860
%S A064860 4,4,2,6,6,4,16,2,6,16,10,4,14,32,6,2,4,16,14,12,24,10,14,2,26,24,22,
%T A064860 36,38,12,24,8,14,8,52,8,34,32,14,16,52,32,46,14,2,14,52,2,120,64,4,32,
%U A064860 50,44,12,32,18,34,58,12,70,52,48,12,50,18,66,8,14,96,18,8,64,42,30,36
%N A064860 Period of continued fraction of sqrt(7)*n.
%K A064860 nonn
%O A064860 1,1
%A A064860 Richard Guy, Oct 26, 2001


Even though there are a large number of sequences in the table, at least
one of yours is not there! Please send it to me.

Date: Wed, 16 Jan 2002 12:41:12 -0700 (MST)
From: Richard Guy <rkg at cpsc.ucalgary.ca>

Examine [and correct where necessary!] the
following table for simple relationships,
prove any that are true and find counterexamples
for the others.  Do the same thing for other
values of 7.       R.

r  is the rank of apparition of the number  n
(i.e., the least r for which  n  divides  u_r)
in the recurring sequence  u_k+1 = 16 u_k - u_k-1,
u_0 = 0, u_1= 3.  (u_2 = 48, u_3 = 765, u_4 = 12192)

[Lucas-Lehmer tell us that if  n  is a prime, p,
then  p  divides  u _ p-(7|p) and  r  divides
p-(7|p)  where  (7|p) is the Legendre symbol
\pm1  according as  p = \pm(1, 3, 9) or
\pm(5, 11, 13) mod 28.  u_k is the coefficient
of sqrt(7) in the  k-th  power of the
fundamental unit in  Q(sqrt(7)).  One expects
that  r  and  m  (see next para.) have the
same order of magnitude.  Can this be, has this
been, quantified?]

m (don't like typing ell) is the length of the
period of the continued fraction for sqrt(7*n^2)

a_m = 2 * a_0 = 2 * floor(sqrt(7*n^2)) is the
  m-th  partial quotient.

a_m/2  is the partial quotient in the middle
of the palindrome.

I've added three more rows to the table:
the length of period, q, of the neg(ative)
continued fraction;  the sum, s, of the
partial quotients of the neg;  and the
difference,  d = s - q.  The partial quotient
b_q  will be  a_m + 2

n     1  2  3  4  5  6   7  8  9  10  11 12  13  14 15
r     1  2  1  2  3  2   7  2  3   6   6  2   7  14  3
m     4  4  2  6  6  4  16  2  6  16  10  4  14  32  6
q     2  6  1  4  9  2  36  6  5  12  30  2  53  80  7
a_m   4 10 14 20 26 30  36 42 46  52  58 62  68  74 78
a_m/2 1  2  1  2  1  6  17  6  3  12   8  2   3  18  5
s     9 24 16 30 48 40 135 54 64 102 132 68 192 258 96
d     7 18 15 26 39 38  99 48 59  90 102 66 139 178 89

n     16  17  18  19  20  21  22  23  24  25  26  27
r      2   3   6   9   6   7   6   6   2  15  14   9
m      2   4  16  14  12  24  10  14   2  26  24  22
q      3   2   8  89  20  18  34  24   2  81 128  27
a_m   84  88  94 100 104 110 116 120 126 132 136 142
a_m/2  3  43  22   7   6   5  16  16   2   9  34   9
s     90 135 154 294 292 159 192 186 130 360 474 238
d     87 133 146 105 272 141 158 162 128 279 346 211

n     28  29  30  31  32  33  34  35  36  37  38
r     14  14   6  15   4   6   6  21   6  18  18
m     36  38  12  24   8  14   8  52   8  34  32
q     50  92  10 178   4  14   6 116  10 196 202
a_m  148 152 158 164 168 174 178 184 190 194 200
a_m/2  8  20  38  81  41   2  44   3  10  26  50
s    312 390 228 657 219 216 276 513 260 662 720
d    262 298 218 479 215 202 270 397 250 466 518

n     39  40  41  42  43  44  45  46  47  48   49
r      7   6  21  14  22   6   3   6  23   2   49
m     14  16  52  32  46  14   2  14  52   2  120
q     39   8  46  42 242  42  17  42  76   1  406 
a_m  206 210 216 222 226 232 238 242 248 252  258
a_m/2 13   2 107  54  32  32  17  34 123   1  129
s    292 252 539 404 816 324 272 336 663 254 1293
d    253 244 493 362 574 282 255 294 587 253  887

n     50  51  52  53  54  55  56  57  58  59  60
r     30   3  14  26  18   6  14   9  14  29   6
m     64   4  32  50  44  12  32  18  34  58  12
q    122   2  72 198  46  38  34  53  90 199   6
a_m  264 268 274 280 284 290 296 300 306 312 316
a_m/2 66  13  16  40  70   2   4  21  42  21  18
s    744 285 510 816 556 372 426 426 528 880 372
d    622 283 438 618 510 334 392 373 438 681 366

n     61   62  63  64  65  66   67  68  69   70  71
r     31   30  21   8  21   6   34   6   6   42   9
m     70   52  48  12  50  18   66   8  14   96  18
q    345  368  68  10  73  16  750  10  28  202  55
a_m  322  328 332 338 342 348  354 358 364  370 374
a_m/2 23   82   1  83  23   4   50  22   4   92  25
s   1164 1350 613 489 642 390 1410 420 426 1104 510
d    819  982 545 479 569 374  660 410 398  902 455

n     72   73  74  75  76   77  78   79  80  81   82
r      6   37  18  15  18   42  14   20   6  27   42
m      8   64  42  30  36   96  32   34  12  58   96
q      6  512 148  67 124  274  62  258  10 127  122
a_m  380  386 390 396 402  406 412  418 422 428  432
a_m/2  4  193  54  27  24    2 102   58   1  29  108
s    478 1815 810 612 786 1206 664 1062 477 862 1164
d    472 1303 662 545 662  932 602  804 467 735 1042

n     83  84  85   86  87  88   89  90  91  92  93
r     41  14   3   22  14   6   45   6   7   6  15
m     94  28   4   42  30  10  112   8  16  10  32
q    321  38   2  434  82  70  120  18  22  78  76
a_m  438 444 448  454 460 464  470 476 480 486 492
a_m/2 31  26   7   64   6  66  235 118   1  68  27
s   1344 608 459 1458 644 618 1287 632 537 648 705
d   1023 570 457 1024 562 548 1167 614 515 570 629

n      94  95  96   97   98  99  100 101 102  103 104
r      46   9   4   49   98   6   30  17   6   51  14
m     104  18   4  108  228   8   72  46   8  108  28
q     178  71   2  690  872  14  108  85   6  740  50
a_m   496 502 506  512  518 522  528 534 538  544 550
a_m/2 124  35 125  255  128   4   32  37 134  271   8
s    1402 654 635 2431 2932 580 1026 774 676 2615 714
d    1224 583 633 1741 2060 566  918 689 670 1875 664

n      105  106 107  109  113  127  131  137  139
r       21   26  18   54   28    4   13   34   23
m       44   58  42  114   58    2   34   66   58
q       66  186 164  692  188   96   79  202  163
a_m    554  560 566  576  596  672  692  724  734
a_m/2    1   80  80   82   84   96   49  102   51
s      825 1068 930 2424 1128  864  894 1414 1140
d      759  882 766 1732  940  768  815 1212  977

m = 2r  for  n = 2, 3, 5, 6, 9, 12, 13, 15, 20,
                 30, 32, 39, 55, 57, 59, 60, 71,
                 75, 76, 80, 84, 95, 104  and
                 what other values?

m = r  for  n = 8, 16, 24, 48, 96 and any other
                values?

is it true that  r \leq m \leq 4r ?  [No! n = 127.
                                 Note also n = 96,
numerologists will note that 127 = 2^7 - 1 ]

a_m/2 = 1  for  n = 1, 3, 5, 48, 63, 80, 91,
                    105 and what other values?

a_m/2 = 2  for  n = 2, 4, 12, 24, 33, 40, 55,
                    77 and any others?

a_m / a_m/2 is close to an integer  i  for

n =  3  7  8 10 11 14 17 19 22 26 30 31 32 34
i = 14  2  7  4  7  4  2 14  7  4  4  2  4  4

n  37 38 41 42 43 44 45 46 47 49 50 53 54 57 58
i   7  4  2  4  7  7 14  7  2  2  4  7  4 14  7

n  60 61 62 64 67 70 73 78 79 82 83 86 88 89 90
1  14 14  4  4  7  4  2  4  7  4 14  7  7  2  4

n  92 94 96 97 98 102 103 106 107 109 113 127 137
i   7  4  4  2  4   4   2   7   7   7   7   7   7

Is the average size, s/q, of the partial quotients
of the negs more often exactly an integer, j,
than you'd expect?

n  2  3  6  8 12 16 24 34 36 45 46  48 60 68 84
j  4 16 20  9 34 30 65 46 26 16  8 254 62 42 16

n 113 127 137       These last three seem
j   6   9   7       especially spectacular

End.








More information about the SeqFan mailing list