# [seqfan] Re: UnitaryPhi

Ami Eldar amiram.eldar at gmail.com
Sun Sep 2 13:39:46 CEST 2018

```a(20)>10^10 if exists.

On Sat, Sep 1, 2018 at 7:03 AM, <zbi74583_boat at yahoo.co.jp> wrote:

>     Hi  Richard, Ami
>     Thanks for confirming and computing more terms
>     The result  that a(12), a(14), a(15) are nice
>     I understood that a(20) is still interesting unknown problem
>     What number have you computed up to?
>
>     To compute RMPN  mentally is easy  Where RMPN is Rational Multiple
> Perfect Number such that Sigma(n)=k*n  k is rational number
>
>     Yasutoshi
>
>
> ----- Original Message -----
>
>
>
> > Cc:
>
> > Date: 2018/9/1, Sat 00:58
> > Subject: [seqfan] Re: UnitaryPhi
> >
> > In response to http://list.seqfan.eu/pipermail/seqfan/2018-August/
> 018717.html:
> >
> > I get the same values for a(2)--a(11), a finite value for a(12),
> > the same value for a(13) and a(16)-a(19),
> > but smaller values for a(14), a(15):
> >
> > 12 64281600 [1, [[2, 10], [3, 4], [5, 2], [31, 1]]]
> > 13 13 [1, [[13, 1]]]
> > 14 84672 [1, [[2, 6], [3, 3], [7, 2]]]
> > 15 129600 [1, [[2, 6], [3, 4], [5, 2]]]
> > 16 16 [1, [[2, 4]]]
> > 17 17 [1, [[17, 1]]]
> > 18 518400 [1, [[2, 8], [3, 4], [5, 2]]]
> > 19 19 [1, [[19, 1]]]
> > 20 ??
> > 21 254016 [1, [[2, 6], [3, 4], [7, 2]]]
> >
> > To clarify: (n-1)/n*m means (n-1)*m/n and UnitaryPhi = A047994.
> >
> > --
> > Seqfan Mailing list - http://list.seqfan.eu/
> >
>
>
> --
> Seqfan Mailing list - http://list.seqfan.eu/
>

```