# [seqfan] questions about walks in the plane

Neil Sloane njasloane at gmail.com
Thu May 28 18:26:47 CEST 2020

```An old friend (Kees Immink) asked me about the conjecture of David Scambler
in A085363.  In fact there are 4 assertions/conjectures in the OEIS of this
type: (the first is only a one-D walk)

%C A001630 Apparently for n>=2 the number of 1-D walks of length n-2 using
steps +1, +3 and -1, avoiding consecutive -1 steps. - _David Scambler_, Jul
15 2013

%C A084768 Number of directed 2-D walks of length 2n starting at (0,0) and
ending on the X-axis using steps NE, SE, NE, SW and avoiding NE followed by
SE. - _David Scambler_, Jun 24 2013

%C A085363 Apparently, the number of 2-D directed walks of semilength n
starting at (0,0) and ending on the X-axis using steps NE, SE, NW and SW
avoiding adjacent NW/SE and adjacent NE/SW. - _David Scambler_, Jun 20 2013

%C A101500 Directed 2-D walks with n steps starting at (0,0) and ending on
the X-axis using steps N,S,E,W and avoiding N followed by S. - _David
Scambler_, Jun 24 2013

I know we have several experts here - could someone help and provide proofs?

The third question is the following:
Let a(n) = the number of 2-D directed walks of semilength n starting at
(0,0) and ending on the X-axis using steps NE, SE, NW and SW avoiding