# [seqfan] More Large Linear Recurrences with Small Coefficients

Ron Hardin rhhardin at att.net
Mon Mar 28 18:11:15 CEST 2011

```http://oeis.org/A188333 T(n,k)= Number of nondecreasing arrangements of n
nonzero numbers in -(n+k-2)..(n+k-2) with sum zero
has rows with empirical large recurrences with small coefficients:

http://oeis.org/A188334 Number of nondecreasing arrangements of 4 nonzero
numbers in -(n+2)..(n+2) with sum zero
http://oeis.org/A188334 Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-4)+2*a(n-6)-a(n-7)

http://oeis.org/A188335 Number of nondecreasing arrangements of 5 nonzero
numbers in -(n+3)..(n+3) with sum zero
http://oeis.org/A188335 Empirical:
a(n)=2*a(n-1)-a(n-3)-2*a(n-5)+2*a(n-6)+a(n-8)-2*a(n-10)+a(n-11)

http://oeis.org/A188336 Number of nondecreasing arrangements of 6 nonzero
numbers in -(n+4)..(n+4) with sum zero
http://oeis.org/A188336 Empirical:
a(n)=2*a(n-1)-a(n-3)-a(n-5)+2*a(n-8)-a(n-11)-a(n-13)+2*a(n-15)-a(n-16)

http://oeis.org/A188337 Number of nondecreasing arrangements of 7 nonzero
numbers in -(n+5)..(n+5) with sum zero
http://oeis.org/A188337 Empirical:
a(n)=2*a(n-1)-a(n-3)-a(n-5)+a(n-6)-2*a(n-7)+2*a(n-8)+a(n-9)-a(n-13)-2*a(n-14)+2*a(n-15)-a(n-16)+a(n-17)+a(n-19)-2*a(n-21)+a(n-22)

http://oeis.org/A188338 Number of nondecreasing arrangements of 8 nonzero
numbers in -(n+6)..(n+6) with sum zero
http://oeis.org/A188338 Empirical:
a(n)=2*a(n-1)-a(n-3)-a(n-5)+a(n-6)-a(n-7)+a(n-9)+a(n-10)+a(n-12)-2*a(n-13)-2*a(n-16)+a(n-17)+a(n-19)+a(n-20)-a(n-22)+a(n-23)-a(n-24)-a(n-26)+2*a(n-28)-a(n-29)

rhhardin at mindspring.com
rhhardin at att.net (either)

```